

Proposal for reducing GHG emissions by controlling the airflow rate of an ammonia concentration meter in Aeration tank of STPs

Minto Matsunaga Business Development Manager HORIBA India Pvt. Ltd.

Current situation – Wastewater

Infrastructure	Operation
Inadequate capacity(Approx. 30%) Old/poorly maintained facilities Missing sewer networks	High energy consumption (aeration) Lack of skilled operators Poor sludge management
Governance & Finance	Environment & Health

NMCG(National Mission for Clean Ganga)

AMRUT Mission (The Atal Mission for Rejuvenation and Urban Transformation)

► Further <u>STP construction</u>, <u>increased processing capacity</u>, and <u>stricter regulations</u>

HORIBA's Proposal

Air volume control in the aeration process using a highprecision ammonia nitrogen meter

[Expected effects]
Improved efficiency of organic matter treatment, reduction of GHG emissions and operational costs through energy savings

*It may applicable "GHG Mitigation Activities" No.7 High end technology for energy efficiency

Reduce CO₂ as GHG

Reduce electricity cost

Contribute serious power shortage

Application

HC-200NH is an ammonia nitrogen(NH4-N) meter using ion electrode method which is designed for aeration control in wastewater treatment.

vs conventional control

DO-based control:

DO is indirect indicator of nutrient. Requires maintaining a constant state of overaeration, and it is difficult to respond to fluctuations in the inflowing wastewater in real time.

<u>Ammonia-based control:</u>

NH₄-N is direct indicator of nutrient. The required air volume can be controlled according to the ammonia concentration in the aeration tank, minimizing over-aeration.

Japanese EPC has succussed average 16% power consumption reduction. Air volume control using ammonia sensors is becoming a trend in the United States, China, Japan, South Korea, and Europe.

Reference - How much CO₂ it can reduce

[Premise]

- 1) 180kWh/day/MLD in WWTP by Activated Sludge Process
- 2) Approx. 0.7kg CO2e/kWh

A wastewater treatment plant : 25MLD(Middle size)

 $180kWh \times 25MLD \times 0.7kg = 3,150kg CO2e/day 3,150kg \times 365 days = 1,149,750kg/year$

Assuming about 40% of the total

- → Amount of CO2 generated by using a blower: 459,900kg/year
- → If we can save energy by 20% by introducing an ammonia meter,

Reduction: 91,980kg CO2e/kWh per year*

*Varies depending on sample and customer situation

Expected result

Reduce CO2 as GHG

Appropriate blower air volume control optimizes over-aeration. This reduces the electricity used by the blower, indirectly contributing to CO2 reductions.

Reduce electricity cost

Optimal blower control reduces power consumption, reducing electricity costs at sewage treatment plants and improving running costs.

Contribute serious power shortage

Reducing electricity consumption at the sewage treatment plant will increase the amount of electricity available to nearby residents.

Overview – Ammonia nitrogen

Case study – Aeration tank

Contributing to energy conservation, CO2 reduction, and power shortages

For example – How much cost it can reduce

[Premise]

- 1) 8 INR per kilowatt (kWh) (← average electricity price)
- 2) 180kWh/day/MLD in WWTP by Activated Sludge Process

A wastewater treatment plant : 25MLD(Middle size)

```
180kWh x 25MLD x ₹8/kWh = ₹36,000/day
₹36,000 x 365 days = ₹13,140,000/year
```

Assuming about 40% of the total

- → Blower electricity bill: ₹5,256,000/year
- → If we can save energy by 20% by introducing an ammonia meter,

Reduction: ₹1,051,200 year*

*Varies depending on sample and customer situation

HORIBA 10

Competitors' sensors and analyzers

	Sensors	Analyzers
Measurement Method	ISE - Ion Selective Electrode (Immerse directly in the sample)	Wet chemistry using gas selective electrode (Draw sample, mixes chemical, then take measurement)
Advantage	Direct immersion(easy to measure and maintain)	Wide measurement range and more accurate
Disadvantage	Less accurate at low concentration and easy to drift (Other than Horiba)	Requires sampling preprocessing. more maintenance and cost.
Other information	Most of competitors do not recommend sensors to customers.	Customers are not very satisfied with analyzers due to cost, maintenance and response.

Comparison with sensors

	HORIBA	Others
Advantage	 Stable measurement even on the low range measurement Anti fouling by ultrasonic cleaner Deterioration diagnosis function 	 Price less expensive Low range measurement not recommended. Drift and sudden error which cause frequent maintenance (According to customers comments)

■ Field test result

UNIQUE

Expected result - additional

Reduce CO2 as GHG

Appropriate blower air volume control optimizes over-aeration. This reduces the electricity used by the blower, indirectly contributing to CO2 reductions.

Reduce electricity cost

Optimal blower control reduces power consumption, reducing electricity costs at sewage treatment plants and improving running costs.

Contribute serious power shortage

Reducing electricity consumption at the sewage treatment plant will increase the amount of electricity available to nearby residents.

Contribute to N2O reduction

This may contribute to research on N2O generation suppression.

*The global warming potential (GWP) of nitrous oxide (N₂O) is approximately 273 times that of carbon dioxide (CO₂) (evaluated over 100 years).

Protect River and Sea quality

Because NH4 is measured directly, the treated water discharged will be below the regulated value.

